Status of the Gluon Spin Program at STAR

Scott Wissink for the STAR Collaboration

Outline

- Brief motivation: the why and how of ΔG
- Inclusive studies: pions and jets
- Coincidence studies: di-jets and γ-jets
- Status and Outlook

The Spin Puzzle: Why is ΔG still interesting?

The RHIC spin program:

Study hard partonic scattering processes in polarized pp collisions, using polarization of one parton to probe helicity preferences of the other

→ Provides a "snapshot" of spin distributions:

$$\langle \mathbf{S}_{\mathbf{z}}^{\mathbf{p}} \rangle = \frac{1}{2} = \frac{1}{2} \Delta \Sigma + \Delta \mathbf{g} + \langle \mathbf{L}_{\mathbf{z}}^{\mathbf{quarks}} \rangle + \langle \mathbf{L}_{\mathbf{z}}^{\mathbf{gluons}} \rangle$$

$$quark\ helicity \qquad gluon\ helicity$$

Electroweak probes are only indirectly sensitive to gluons

→ DIS studies provide limited constraints on gluonic spin ... but are consistent with quark helicity contributions of ~30%!

Hirai, Kumano, Saito

The Spin Puzzle: What RHIC brings to the table

All the pieces are in place to ask:

Does the gluon spin contribute

significantly to that of the proton?

Provides pQCD probes of spin-dependent partonic structure!

The STAR Detector: What we need for these studies

Inclusive Measurements: Strengths and limitations

"First generation" efforts

- High yield for pions and jets
- Relatively simple triggering
- **Relatively simple reconstruction**

<u>But:</u> must untangle (or account for) contributions from several partonic subprocesses, and broad range of x_{α} for a given p_{τ} bin \rightarrow hard to interpret!

Plan of attack: detect outgoing particle/jet, extract spin-dependent yields, form the longitudinal double-spin asymmetry

$$A_{LL} = rac{1}{P_{Y}P_{B}} rac{N^{parallel} - R \cdot N^{antiparallel}}{N^{parallel} + R \cdot N^{antiparallel}}$$

Inclusive Measurements: Strengths and limitations

"First generation" efforts

- High yield for pions and jets
- Relatively simple triggering
- **Relatively simple reconstruction**

<u>But:</u> must untangle (or account for) contributions from several partonic subprocesses, and broad range of x_{α} for a given p_{τ} bin \rightarrow hard to interpret!

Plan of attack: detect outgoing particle/jet, extract spin-dependent yields, form the longitudinal double-spin asymmetry

$$A_{LL} = rac{1}{P_{Y}P_{B}} rac{N^{parallel} - R \cdot N^{antiparallel}}{N^{parallel} + R \cdot N^{antiparallel}}$$

Inclusive Measurements: Get the cross section right!

- Mid-rapidity jet cross section consistent with NLO pQCD over 7 orders of magnitude
- Forward rapidity π^0 cross section also consistent with NLO pQCD
- Many other examples
- √ pQCD works over a very broad kinematic range at RHIC energies!

Inclusive neutral pions: a broad range of rapidity

In Run 6, **STAR** measured A_{LL} for inclusive π^0 for three different rapidity regions:

- \triangleright Mid-rapidity excludes models with large \triangle g, consistent with EEMC results
- > qg scattering dominant at forward + larger x quarks, smaller x gluons
 - \triangleright Theoretically, expect A_{LL} to decrease substantially as η increases

Forward rapidity: baseline for γ and γ-jet measurements.

Inclusive charge-separated pions at mid-rapidity

- For qg processes, $A_{LL}(\pi^+)$ and $A_{LL}(\pi^-)$ can be utilized to track the sign of Δg
 - for example, if $A_{LL}(\pi^+) > A_{LL}(\pi^-) \Rightarrow \Delta g > 0$
- Dominant systematic uncertainty from the use of neutral energy triggers at STAR, most pions are subleading particles in the jet

Inclusive jets: the Workhorse of STAR so far

Midpoint cone algorithm (hep-ex/0005012)

$$R_{CONE} = \sqrt{\left(\Delta\phi\right)^2 + \left(\Delta\eta\right)^2} = 0.4 \ (2003-2005)$$

= 0.7 (2006)

STAR is well suited for jet measurements:

- TPC provides excellent charged-particle tracking and p_T information over broad range in η
- Extensive EM calorimetry over full 2π in azimuth and for -1 < η < 2
- Sophisticated multi-level triggering on EMC info. at tower and patch scale

Inclusive jets: Asymmetry results from Run 6

Quality of results greatly improved over those of Run 5 (2005)!

- Increased EM calorimeter acceptance (in η), luminosity, polarization
- \Leftrightarrow Higher EMC trigger thresholds \Rightarrow increased focus on high- p_{τ} region
- ❖ Combination of above → factor of 3-4 in stat. precision at high p_T

Confidence level peaks (in GRSV scenario) at $\Delta g = 0$

Inclusive jets: Constraints on ΔG

One way out: Assume a node!

STAR Inclusive jets: Impact on (first) global analysis

Represents the *first global NLO analysis* to include **inclusive DIS, SIDIS, and RHIC pp data** on an equal footing.

- Strong constraint on the magnitude of Δg over kinematic range 0.05 < x < 0.2 probed by STAR at $\sqrt{s} = 200$ GeV
- Data favor a small ∆g in this window

 \rightarrow Best fit solution finds a node in the gluon distribution near $x \sim 0.1$ but with the *opposite phase* from that found in GS-C

Inclusive jet projections: 200 and 500 GeV

200 GeV component of Run 9:

Reduce A_{LL} uncertainties by factor of ~4 relative to Run 6

→ Provide much stronger constraints on gluon polarization

Inclusive jet projections: 500 GeV, 100 pb⁻¹

Mapping out $\Delta g(x)$: the need for correlations

Despite great advances made via study of inclusive processes:

- Measurements average over a broad range in x_q at a given p_T
- Provide minimal information on partonic subprocess involved
- \rightarrow Could 'hide' non-trivial behavior of $\Delta g(x)$, esp. if a node exists!

 \rightarrow Need correlation measurements to help constrain the shape of $\Delta g(x)$

Correlations: charged pions opposite a jet

trigger here

measure these

Problem: Higher trigger thresholds in Run 6 result in a larger fragmentation bias for π^{\pm} in triggered jet

Solution: Trigger on and reconstruct jet, then look for a charged pion on the opposite ("away") side

Result: Correlation measurement **significantly**

increases the sensitivity of $A_{LL}(\pi^+)$

Di-jets in Run 5: Kinematics for 2 → 2 collisions

$$x_{1} = \frac{p_{T}}{\sqrt{s}} \left(e^{\eta_{3}} + e^{\eta_{4}} \right)$$

$$x_{2} = \frac{p_{T}}{\sqrt{s}} \left(e^{-\eta_{3}} + e^{-\eta_{4}} \right)$$

$$M = \sqrt{x_{1}x_{2}s}$$

$$y = \frac{1}{2} \ln \frac{x_{1}}{x_{2}} = \frac{\eta_{3} + \eta_{4}}{2}$$

$$|\cos \theta^{*}| = \tanh \frac{|\eta_{3} - \eta_{4}|}{2}$$

Excellent agreement between full PYTHIA MC and Run 5 data

Di-jets require large coincident solid angle – STAR well suited for these studies High yields allow near triple differential distributions in dM, d η , dcos(θ *)

- \rightarrow select kinematics for x_g dependence
- → select kinematics for high-x quarks and favorable a_{LL}

Results: First di-Jet cross section!

- Unpolarized differential cross-section
 vs. invariant mass M above 20GeV/c2
- NLO theory predictions by D. deFlorian et al. using MRST2004 pdfs with (\$\iiii)\$) and without (\$\bilde{\blde{\bilde{\blde{\blde{\bilde{\blde{\bilde{\bilde{\bilde{\bilde{\blde{\bilde{\blde{\blde{\blde{\bilde{\ble}\bilde{\bld
 - Statistical uncertainties are shown in
 blue (—)
 - Energy scale uncertainty is shown in yellow ()
 - Comparison to theory together with theory scale uncertainties

Di-jets in Run 9, 200 GeV: Expected sensitivity to Δg

To leading order, di-jets provide direct access to initial-state parton kinematics (x₁, x₂)

By detecting di-jets in different regions (η, ϕ) of the *STAR* detector, we

- sample different mixtures of qq, qg, gg
- sample different ranges of x_g
- → Provides much tighter constraints on theoretical models

Errors shown are statistical only!

Di-jets at 500 GeV: projections for 390 pb⁻¹, P = 50%

Going to higher \sqrt{s} will:

- provide access to lower values of gluonic x
- measured asymmetries expected to be smaller than at 200 GeV
- should be compensated by smaller statistical uncertainties due to higher luminosities

De Florian, Frixione, Signer and Vogelsang, NPB 539 (1999) 455 and private comm.

Errors shown are statistical only!

Photon-jet coincidences: Still the 'golden channel'?

Despite low yield, γ -jet studies offer several key advantages:

- Dominance of a single LO pQCD subprocess: qg → qγ
- Large spin correlation (→ 1) when partons are back-scattered
- Most asymmetric collisions involve high-x (highly polarized) quarks that Compton scatter from low-x (abundant, interesting) gluons
- Direct photon should provide most precise estimate of partonic p_T , \rightarrow combined with η_{γ} and η_{jet} , yields robust information on x_{α} , x_{α}

Physics at RHIC

Photon-jet coincidences: finding the events!

Photon-jet coincidences: LDA analysis

$$p_t^{\gamma} > 7 \text{GeV}, 0 < E_{prel} < 4 \text{MeV}$$

Use high E_{dep} in Endcap "pre-shower" layers to veto QCD background + full linear discriminant analysis incorporating other detector components

→ Yields a high efficiency (~70%), photon-enriched sample, plus a high-statistics, photon-depleted (QCD background) sample

Photon-jet: projections for 50 pb⁻¹ at 200 GeV

A_{LL} for forward photons and coincident mid-rapidity jets

- Cleanest assignment of $(x_1,x_2) \Leftrightarrow (quark,gluon)$
- Error bars show statistical uncertainties only, no bkgd subtraction, but ...
- do not include expected improvements due to FGT
- Probes gluons at smaller x than other competing exp'ts
- Can push to even lower x_g
 via photon detection in FMS

Summary and Outlook

STAR has developed a broad and diverse program for studying ΔG \rightarrow Complementary measurements support small gluon polarization over the range $0.05 < x_q < 0.2$

Over next 2-3 years expect greater precision in inclusive channels at 200 GeV, plus new results at 500 ...

... and increased focus on di-jet and γ -jet correlations to more fully map out gluon helicity distribution

→ Must view △G studies as <u>one component</u> of broader program to understand <u>all aspects</u> of parton spin behavior in the nucleon!

